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Normal renal function is essential for vitaminDmetabolism, but it is unclearwhether circulating vitaminD is associated

with risk of renal cell carcinoma (RCC). We assessed whether 25-hydroxyvitamin D3 (25(OH)D3) was associated with

risk of RCC and death after RCC diagnosis in the European Prospective Investigation into Cancer and Nutrition (EPIC).

EPIC recruited 385,747 participants with blood samples between 1992 and 2000. The current study included 560 RCC

cases, 557 individually matched controls, and 553 additional controls. Circulating 25(OH)D3 was assessed by mass

spectrometry. Conditional and unconditional logistic regression models were used to calculate odds ratios and 95%

confidence intervals. Death after RCC diagnosis was assessed using Cox proportional hazards models and flexible

parametric survival models. A doubling of 25(OH)D3 was associated with 28% lower odds of RCC after adjustment

for season of and age at blood collection, sex, and country of recruitment (odds ratio = 0.72, 95% confidence interval:

0.60, 0.86;P = 0.0004). This estimatewas attenuated somewhat after additional adjustment for smoking status at base-

line, circulating cotinine, body mass index (weight (kg)/height (m)2), and alcohol intake (odds ratio = 0.82, 95% confi-

dence interval: 0.68, 0.99; P = 0.038). There was also some indication that both low and high 25(OH)D3 levels were

associated with higher risk of death from any cause among RCC cases.

nested case-control study; prospective study; renal cell carcinoma; vitamin D

Abbreviations: 25(OH)D, 25-hydroxyvitamin D; 25(OH)D2, 25-hydroxyvitamin D2; 25(OH)D3, 25-hydroxyvitamin D3; BMI, body

mass index; CI, confidence interval; EPIC, European Prospective Investigation into Cancer and Nutrition; OR, odds ratio; RCC,

renal cell carcinoma; UVB, ultraviolet B.

Vitamin D is essential for the efficient absorption of die-
tary calcium. Beyond its role in bone health, vitamin D has
been implicated in the etiology of several cancers, most no-
tably colorectal cancer (1, 2). Vitamin D is produced in the
skin after exposure to ultraviolet B (UVB) radiation from

sunlight, or it is ingested in the diet or through dietary sup-
plements (3). After ingestion or endogenous synthesis, vita-
min D is hydroxylated in the liver to form 25-hydroxyvitamin
D (25(OH)D), the major circulating metabolite of vitamin
D, which is subsequently converted into its active form
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(1,25-dihydroxyvitamin D), primarily in the kidneys. Despite
the critical role of the kidneys in vitamin D metabolism, it re-
mains unclear whether vitamin D is relevant to the etiology of
kidney cancer.

In 2008, the age-standardized incidence rate of kidney can-
cer was 3.9 cases per 100,000 people worldwide, but there is
notable unexplained variation in incidence from country to
country (4). A link between vitamin D and the most prevalent
form of kidney cancer, renal cell carcinoma (RCC), was ini-
tially suggested on the basis of ecological evidence. For in-
stance, ecological studies have suggested that RCC incidence
is inversely associated with exposure to UVB radiation (5, 6).
Similarly, vitamin D deficiency is highly prevalent among
blacks (7), and rates of RCC are higher among blacks than
whites in the United States (8).

To date, 2 prospective studies have assessed prediagnostic
circulating 25(OH)D and the risk of RCC, with conflicting
results (9, 10). Our aim was to investigate whether circulating
25(OH)D is related to the incidence of RCC and post-RCC
survival using a prospective nested case-control sample
from a large European cohort.

METHODS

Study cohort

The recruitment and baseline assessment of the European
Prospective Investigation into Cancer and Nutrition (EPIC)
are described in detail elsewhere (11). Between 1992 and
2000, 521,330 individuals from 10 countries were recruited,
385,747 of whom donated blood samples. Blood fractions
were aliquoted into 0.5-mL straws, which were heat sealed
and stored in liquid nitrogen tanks at−196° Celsius, except in
Umeå, Sweden, where samples were stored in 1.8-mL plastic
tubes in freezers at −80° Celsius and in Denmark, where sam-
ples were stored in 1-mL plastic tubes in liquid nitrogen vapor
at −150° Celsius. Participants completed self-administered
questionnaires on lifestyle factors, medical history, and diet,
and their heights and weights were measured using standard
protocols. All participants gave written informed consent.
The study was approved by the ethics committee at the Inter-
national Agency for Research on Cancer (Lyon, France) and
the local ethics committees of the study centers.

Case ascertainment and follow-up

Incident cancer cases were identified via linkage to
population-based cancer registries (in Denmark, Italy (except
Naples), the Netherlands, Norway, Spain, Sweden, and the
United Kingdom) or by active follow-up (in France, Ger-
many, Greece, and Naples, Italy), which involved a combina-
tion of methods, including review of health insurance records
and cancer and pathology registries, as well as direct contact
with participants and their next-of-kin.

Mortality data were obtained from death registries at the re-
gional or national level. Participants were followed up from
study entry until cancer diagnosis (except nonmelanoma skin
cancer), death, emigration, or the end of follow-up. The end of
follow-up was defined as the latest date of complete follow-
up for both cancer incidence and vital status and varied by

study center from December 2004 to June 2010. Vital status
at follow-up is more than 98% complete.

Selection of cases and controls

We identified 905 participants who were diagnosed with
RCC (with International Classification of Diseases for On-
cology, Second Edition, code C64.9). We excluded prevalent
cases and cases with a history of another cancer (excluding
nonmelanoma skin cancer, n = 85); cases who did not donate
a blood sample (n = 153); cases who had no questionnaire
information available (n = 6); cases whose cancers were not
histologically confirmed (n = 27); and cases from the Malmö
center in Sweden, which did not participate in this study
(n = 64), leaving 570 eligible RCC cases. For each case, 1
control was chosen randomly from risk sets consisting of
all cohort members who were alive and free of cancer (except
nonmelanoma skin cancer) at the time of diagnosis of the
index case. Matching criteria were country, sex, date of
blood collection (±1 month, which was relaxed to ±5 months
for 27% of sets without available controls), and date of birth
(±1 year, which was relaxed to ±5 years for 1% of sets with-
out available controls). Additionally, we included 553 con-
trols (henceforth referred to as “unmatched controls”) that
were individually matched to cases from another cancer site
in a parallel ongoing study using identical matching criteria.
These unmatched controls were included to increase the pre-
cision of the estimates.

Biochemical analyses

Plasma samples were sent on dry ice to the Bevital AS
laboratory(Bergen,Norway).Liquidchromatographycoupled
with tandemmass spectrometrywasused to separatelyanalyze
25-hydroxyvitamin D2 (25(OH)D2) and 25-hydroxyvitamin
D3 (25(OH)D3) (12). The limit of detection was 3.3 nmol/
L, and within-day and between-day coefficients of variation
were 4.4%–8.2%.We found that 25(OH)D2 was undetectable
in themajority of samples, so our analyses focus on 25(OH)D3.
Sensitivity analyses were conducted using the sum of
25(OH)D2 and 25(OH)D3 (setting undetectable levels of
25(OH)D2 to 0), which yielded essentially identical results.
Creatinine and cotinine were also assessed with liquid chro-
matography coupled with tandem mass spectrometry. For
cotinine, the limit of detection was 1 nmol/L, and the within-
day and between-day coefficients of variation were 2%–6%;
for creatinine, the limit of detection was 0.25 µmol/L, and
the within-day and between-day coefficients of variation
were 2%–6%. The laboratory is Vitamin D External Quality
Assessment Scheme–certified (DEQAS, London, United
Kingdom).

Statistical analysis

We used conditional logistic regression to calculate odds
ratios and 95% confidence intervals for 25(OH)D3 as a con-
tinuous variable, conditioning on matched case set. Concen-
trations were logarithmically transformed (base-2) prior to
modeling, so odds ratios correspond to the expected change in
odds foradoubling inconcentration.Wealsousedunconditional
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logistic regression (adjusted for age at blood collection (in
years), sex, and country of recruitment) to compare cases
with matched controls and to the pooled group of the matched
and unmatched controls. To establish whether known risk
factors for RCC could explain any association, we fitted mod-
els adjusted for tobacco smoking (status at baseline of never,
former, or current smoker; and quartiles of circulating cotin-
ine determined by the distribution among current smokers),
alcohol intake at recruitment (in g/day), and body mass
index (BMI) (weight (kg)/height (m)2). As a sensitivity anal-
ysis, we fitted models that were additionally adjusted for sys-
tolic blood pressure (in mm Hg), circulating creatinine (a
marker of renal function, in µmol/L,), and self-reported prev-
alent diabetes, all of which may be on the causal pathway.We
investigated potential effect modification by fitting interac-
tions with log2 25(OH)D3. Hazard ratios for all-cause mor-
tality after RCC diagnosis were calculated using a Cox
proportional hazards model with time since diagnosis as
the time scale. We modeled 25(OH)D3 using restricted
cubic splines with knots at its 10th, 33rd, 67th, and 90th
percentiles. We included the same covariates as those in the
unconditional logistic models, with the addition of age at di-
agnosis (in years). Visual inspection of smoothed, scaled
Schoenfeld residuals revealed no notable departure from pro-
portional hazards. To estimate the survival function at given
concentrations of 25(OH)D3, we fitted a flexible parametric
survival model (13), modeling the baseline cumulative haz-
ard with restricted cubic splines (knots at the 0th, 33rd, 67th,
and 100th percentiles of the distribution of failure times).
Because 25(OH)D3 is strongly affected by exposure to

UVB radiation, all unconditional logistic models and sur-
vival models were explicitly adjusted for day of blood collec-
tion. Wemodeled seasonality by including 2 pairs of sine and
cosine functions of day of blood collection in the models. The
use of trigonometric functions adjusts for periodic variation
in 25(OH)D3 and produces smooth predictions with no arti-
ficial discontinuities from season to season or year to year.
We included 2 pairs of sine and cosine functions in the mod-
els, because the inclusion of additional terms did not improve
model fit, nor did it substantially affect parameter estimates
for 25(OH)D3.
We present 95% confidence intervals to depict the statistical

uncertainty in the estimates from the risk and survival models.
We also present simulation-based estimates of statistical uncer-
tainty, which we derived by sampling from the asymptotic dis-
tribution of the regression coefficients (the multivariate normal
distribution with location and scale given by the maximum
likelihood estimates and their variance-covariance matrix, re-
spectively). We drew 1,000 samples for each model and used
them to generate plausible predicted odds ratios and hazard
ratios. We plotted predictions that fell within the 95% confi-
dence interval to provide a visual impression of the 95% high-
est posterior density for the estimates under uniform prior
distributions. P values were calculated using the likelihood-
ratio test. The data were nearly complete for all covariates,
so, where necessary, we excluded the few recordswithmissing
data. All statistical analyses were conducted using R, version
3.0.2 (R Foundation for Statistical Computing, Vienna, Austria)
(14). Conditional logistic regression models were fitted using
the Epi package, version 1.1.49, in R (15).

RESULTS

Baseline and demographic characteristics

Of the 570 matched cases and controls, 10 cases and 13
controls were missing data on 25(OH)D3 and were excluded
from the analyses. Demographic and baseline characteristics
for the remaining 560 cases, 557 matched controls, and 553
unmatched controls are presented in Table 1. The median age
at diagnosis for cases was 64 years (5th and 95th percentiles,
49 and 75 years), and the median time from blood collection
to diagnosis was 6.7 years (5th and 95th percentiles, 0.7 and
11.9). The distributions of established risk factors for RCC
showed the expected differences between cases and controls.
A higher proportion of cases than controls were current
smokers at baseline, and a higher proportion of cases had
BMI values of 30 or higher. The unmatched controls had sim-
ilar characteristics to the matched controls, albeit with a
higher proportion of men and a lower proportion of partici-
pants from Sweden, Denmark, and Norway. The distribution
of 25(OH)D3 did not vary greatly by country of recruitment
(Appendix Table 1).

Seasonal variation in plasma 25(OH)D3 concentration

Therewas substantial variation in plasma concentrations of
25(OH)D3 by date of blood collection. Figure 1 shows the
observed concentrations, along with the predicted geometric
mean from a linear regression model of log concentration on
2 pairs of sine and cosine functions of the day of blood col-
lection. On average, concentrations were highest among
those who had their blood drawn during or near the month
of August and lowest among those who had their blood
drawn during or near the months of February and March. De-
spite this seasonal variation, there remained substantial vari-
ability in concentration on any given day of blood collection.

Plasma 25(OH)D3 concentration and risk of RCC

Estimated odds ratios and 95% confidence intervals for a
doubling of 25(OH)D3 are presented in Table 2. Minimally
adjusted models suggested an inverse association. Estimates
from the conditional logistic model of the matched case sets
were similar to those from the unconditional model (condi-
tional odds ratio (OR) = 0.75, 95% confidence interval
(CI): 0.61, 0.91, P = 0.0043; unconditional OR = 0.73, 95%
CI: 0.59, 0.89, P = 0.002), and the inclusion of extra un-
matched controls did not substantially affect the estimated
association (OR = 0.72, 95% CI: 0.60, 0.86, P = 0.0004).
Further adjustment for smoking status at baseline, circulating
cotinine, alcohol intake at recruitment, and BMI attenuated
the estimates somewhat, with odds ratios of 0.82 (95% CI:
0.68, 0.99, P = 0.038) from the model including all controls
and 0.81 (95% CI: 0.65, 1.00, P = 0.051) from the model in-
cluding only matched controls. Among participants whose
blood pressure was assessed at baseline (458 cases and 881
controls), further adjustment by continuous systolic blood
pressure did not affect the estimates for 25(OH)D3 (OR =
0.81, 95% CI: 0.65, 0.99). Similarly, additional adjustment
for prevalent diabetes did not affect the results (OR = 0.81,
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Table 1. Baseline and Demographic Characteristics of EPIC Participants, Recruited 1992–2000

Characteristic

Cases (n = 560) Matched Controls (n = 557) Unmatched Controls (n = 553)

No. % Median
Percentiles
(5th, 95th)

No. % Median
Percentiles
(5th, 95th)

No. % Median
Percentiles
(5th, 95th)

Sex

Male 311 56 309 55 374 68

Female 249 44 248 45 179 32

Age at recruitment, years

<55 229 41 224 40 246 44

55–64.9 285 51 288 52 231 42

≥65 46 8 45 8 76 14

Country

Denmark 114 20 114 20 0 0

France 13 2 13 2 7 1

Germany 126 22 124 22 104 19

Greece 17 3 17 3 22 4

Italy 88 16 88 16 70 13

Netherlands 46 8 46 8 77 14

Norway 4 1 4 1 2 0

Spain 53 9 52 9 100 18

Sweden 32 6 32 6 41 7

United Kingdom 67 12 67 12 130 24

Smoking status at baseline

Never 227 41 246 44 230 42

Former 162 29 179 32 199 36

Current 166 30 129 23 110 20

Missing 5 1 3 1 14 3

Educational attainment

Primary school or less 233 42 206 37 222 40

Technical/professional school 124 22 138 25 141 25

Secondary school 77 14 66 12 70 13

Higher education 110 20 133 24 99 18

Missing 16 3 14 3 21 4

Body mass indexa

<25 182 32 223 40 220 40

25–29.9 248 44 242 43 258 47

≥30 130 23 92 17 75 14

Alcohol intake at recruitment, g/
day

<6 271 48 240 43 246 44

6–17.9 125 22 142 25 148 27

18–29.9 66 12 75 13 64 12

≥30 98 18 100 18 95 17

Age at RCC diagnosis, years 63.8 48.7, 75.1

Years from blood collection to
diagnosis

6.7 0.7, 11.9

Circulating 25(OH)D3, nmol/L 43.2 17.6, 79.0 45.8 19.7, 83.2 48.6 19.5, 80.2

Circulating cotinine, nmol/L 3 0, 1,703 2.6 0.0, 1,451.5 3.0 0.0, 1,500.7

Abbreviations: 25(OH)D3, 25-hydroxyvitamin D3; EPIC, European Prospective Investigation into Cancer and Nutrition; RCC, renal cell

carcinoma.
a Weight (kg)/height (m)2.
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95% CI: 0.66, 0.98). The estimates were also unaffected by
further adjustment for circulating creatinine (OR = 0.81, 95%
CI: 0.66, 0.99).
Figure 2 shows the inverse association between concen-

tration and risk by plotting odds ratio estimates from the
minimally adjusted (Figure 2A) and adjusted unconditional
(Figure 2B) models across the range of observed 25(OH)D3

concentrations. Relative to participants with a concentration
of 50 nmol/L, participants with less than 25 nmol/L had ap-
proximately 20% higher odds of RCC. Correspondingly, par-
ticipants with concentrations greater than 100 nmol/L had
20% lower odds of RCC relative to thosewith a concentration
of 50 nmol/L, but very few participants had concentrations as
high as 100 nmol/L.
To assess potential effect modification, we fitted models

that included interaction terms between log2 25(OH)D3 and
various covariates. Estimates from these models are pre-
sented in Figure 3. The association with risk of RCC did
not vary substantially by age at baseline, sex, country, level
of education, time since blood collection, circulating concen-
tration of creatinine, smoking status, alcohol intake at base-
line, or BMI value, though there was a suggestion that the
association might be slightly stronger for people with BMI
values of 30 or more.

Plasma 25(OH)D3 concentration and survival after

RCC diagnosis

Of the 560 RCC cases, eight were diagnosed after the end
of follow-up for vital status and were thus excluded from the
survival analysis. Among the remaining 552 RCC cases,
we identified 205 deaths from any cause during a median

follow-up of 3.24 years (2,397 person-years were observed
in total). We found that 25(OH)D3 was nonlinearly associated
with risk of death (likelihood ratio test of 25(OH)D3 terms
P = 0.01). Low concentrations of prediagnostic 25(OH)D3

were associated with increased hazards of all-cause mortality
(Figure 4A). The hazard of death was 1.73 times higher (95%
CI: 1.19, 2.51) for participants with concentrations of 25 nmol/L
compared to those with concentrations of 50 nmol/L. There
was an indication that high concentrations might also be as-
sociated with increased hazards of death, but there were very
few participants with concentrations greater than 75 nmol/L.
Model-based estimates of the survival function evaluated at
25, 50, and 75 nmol/L are presented in Figure 4B. The ex-
pected survival probabilities at 5 years after diagnosis were
0.56 (95% CI: 0.49, 0.62) for participants with a concentra-
tion of 25 nmol/L, 0.70 for those with a concentration of
50 nmol/L, and 0.66 (95% CI: 0.58, 0.73) for those with a
concentration of 75 nmol/L.
The higher hazards of death for low concentrations of

25(OH)D3 was apparent regardless of the time between blood
collection and diagnosis; the hazard ratios for those with 25
versus 50 nmol/L were 1.75 (95% CI: 1.02, 2.99) for those di-
agnosed within 5 years of blood collection and 1.67 (95% CI:
1.02, 2.71) for those diagnosed 5 years or more after blood
collection. In contrast, the increased hazards of death for

Table 2. Odds Ratios For a Doubling in Concentration of 25(OH)D3

and the Risk of Renal Cell Carcinoma Among a Nested Case-Control

Sample From the EPIC Cohort, Recruited 1992–2000

Model
No. of

Controls
No. of
Cases

OR 95% CI P Valuea

Minimally adjustedb

Conditional 555 555 0.75 0.61, 0.91 0.0043

Unconditional
(matched
controls)

557 560 0.73 0.59, 0.89 0.002

Unconditional
(combined
controls)

1,110 560 0.72 0.60, 0.86 0.0004

Fully adjustedc

Conditional 547 547 0.86 0.69, 1.06 0.16

Unconditional
(matched
controls)

553 555 0.81 0.65, 1.00 0.051

Unconditional
(combined
controls)

1,092 555 0.82 0.68, 0.99 0.038

Abbreviations: 25(OH)D3, 25-hydroxyvitamin D3; CI, confidence

interval; EPIC, European Prospective Investigation into Cancer and

Nutrition; OR, odds ratio.
a P values from likelihood ratio tests of log2 25(OH)D3.
b Conditional minimally adjusted models were conditioned on

matched case set. Unconditional models were adjusted for age at

baseline, country, seasonality, and sex.
c Fully adjusted models were additionally adjusted for alcohol intake

at recruitment (in g/day), body mass index (weight (kg)/height (m)2),

cotinine quartiles (based on the distribution among smokers), and

smoking status at baseline (never, former, or current smoker).
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Figure 1. Seasonal variation of 25-hydroxyvitamin D3 (25(OH)D3)
concentrations in plasma. Scattered points show the measured val-
ues. The solid line represents the predicted geometric mean concen-
tration given day of blood collection, which was modeled as a linear
combination of sine and cosine functions. See the text of the Methods
section for further details. Estimates and data are from a renal cell car-
cinoma case-control sample nested within the European Prospective
Investigation into Cancer and Nutrition (EPIC), which recruited partic-
ipants between 1992 and 2000.
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higher concentrations was apparent only among those diag-
nosed within 5 years of blood collection, with hazard ratios
for 75 versus 50 nmol/L of 2.22 (95% CI: 1.49, 3.28) for
those diagnosed within 5 years of blood collection and 0.62
(95% CI: 0.33, 1.15) for those diagnosed more than 5 years
after blood collection (likelihood ratio test of interaction terms
P = 0.001). Estimated hazard ratios did not vary by sex, age,
country, educational level, alcohol intake, smoking status, or
circulating creatinine (data not shown).

DISCUSSION

We found suggestive evidence that circulating concentra-
tions of 25(OH)D3 are inversely associated with the risk of
RCC, such that participants with concentrations of less than
25 nmol/L had approximately 20% greater risk than those
with concentrations of 50 nmol/L. We also found that lower
concentrations of 25(OH)D3were nonlinearly associatedwith
the riskof all-causemortality afterRCCdiagnosis.Among the
majority of participants, an inverse association was apparent,
whereas higher concentrations of 25(OH)D3 also appeared to
be associated with higher risk of death.

Previous reports of prospectively measured circulating
25(OH)D and the risk of kidney cancer have produced con-
flicting results. In accordance with our results, the Copenha-
gen City Heart Study, a cohort of 9,791 people, including 55
incident kidney cancer cases, reported that a 50% reduction in
25(OH)D was associated with higher risk (hazard ratio =

1.34, 95% CI: 1.04, 1.73) (9). In contrast, the Vitamin D
Pooling Project found no association in an analysis of 775
case-control pairs nested within 8 prospective cohorts (10).
These discrepant results are not readily explicable. One differ-
ence between the Vitamin D Pooling Project and the present
study is the method of adjustment for season. The Vitamin D
Pooling Project used conditional logistic regression models
adjusted for season of blood collection (summer vs. winter),
with sensitivity analyses adjusted for seasonality by using the
residuals from a local polynomial regression (16). In contrast,
we directly modeled seasonality using smooth trigonometric
functions. Another difference between the studies is that both
theVitaminDPooling Project and theCopenhagenCityHeart
Study used a chemiluminescence immunoassay measuring
both 25(OH)D2 and 25(OH)D3, whereas in the present study,
we used liquid chromatography coupled with tandem mass
spectrometry to quantify 25(OH)D3 specifically. That said,
thesemethodological differenceswould seemunlikely to fully
account for the discrepant results, which remain unexplained.

Although few studies have directly assessed vitamin D sta-
tus, some investigators have taken a different approach, cre-
ating a predicted vitamin D score on the basis of established
determinants of vitamin D concentrations (17, 18). Joh et al.
(19) investigated predicted 25(OH)D concentrations (calcu-
lated on the basis of race, UVB flux, physical activity, BMI
value, vitamin D intake, alcohol consumption, and postmen-
opausal hormone use) and risk of RCC among participants
of the Nurses’ Health Study and the Health Professionals
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Figure 2. Odds ratios for renal cell carcinoma as a function of circulating concentration of 25-hydroxyvitamin D3 (25(OH)D3), relative to a con-
centration of 50 nmol/L. Log-base-2 25(OH)D3 was modeled as a continuous covariate. Solid and dashed lines represent the maximum like-
lihood estimates and 95% confidence intervals, respectively. The translucent lines are 1,000 draws from the multivariate normal distribution
defined by the maximum likelihood estimates and their variance-covariance matrix; they thus give an indication of the posterior density for
the odds ratio under a uniform prior on the regression coefficients. The “rug plot” under each panel shows the observed distribution of
25-hydroxyvitamin D3. Estimates and data are from a nested case-control sample within the European Prospective Investigation into Cancer
and Nutrition (EPIC), which recruited participants between 1992 and 2000. A) Estimates adjusted for age at baseline, sex, country, and season-
ality (sine and cosine functions of day of blood collection). B) Estimates after additional adjustment for smoking status at baseline (never/former/
current smoker), circulating cotinine (quartiles defined among the controls), alcohol intake at recruitment (in g/day), and body mass index (weight
(kg)/height (m)2).
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Follow-up Study. They found a strong inverse association be-
tween predicted 25(OH)D and risk, such that a 10-ng/mL (ap-
proximately 25-nmol/L) increment in predicted score was
associated with a 44% lower hazard of RCC. Although the
magnitude of the estimated association is greater, this result
is broadly consistent with our observation that incrementing
25(OH)D3 from 25 to 50 nmol/L is associated with approxi-
mately 20% lower risk. In contrast, studies of dietary sources
of vitamin D alone have largely yielded null results (20–22),
possibly because dietary sources do not contribute greatly to
circulating vitamin D concentrations (17).
There are several plausible mechanisms that might under-

pin an association between vitamin D and RCC (23). For

instance, it is possible that vitamin D modifies the effects
of risk factors such as obesity, hypertension, or diabetes. Al-
though we observed an indication that the association be-
tween 25(OH)D3 and RCC risk might be slightly stronger
among those with BMI values of 30 of higher, statistical ad-
justment for systolic blood pressure or prevalent diabetes did
not affect the estimates, suggesting a potential role of vitamin
D beyond that of established risk factors. This is consistent
with studies of human RCC cell lines and murine RCC,
which have shown that vitamin D species can inhibit tumor
cell proliferation, angiogenesis, and metastasis (24, 25). Con-
versely, given the critical role of the kidneys in vitamin Dme-
tabolism, it is possible that the observed association is driven
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Figure 3. Stratified odds ratios (ORs) and 95% confidence intervals (CIs) for renal cell carcinoma for a doubling in concentration of
25-hydroxyvitamin D3. Estimates are adjusted for age at baseline, sex, country, seasonality (sine and cosine functions of day of blood collection),
smoking status at baseline (never/former/current smoker), circulating cotinine (quartiles defined among the controls), alcohol intake at recruitment
(in g/day), and body mass index (BMI) (weight (kg)/height (m)2). P values are from likelihood ratio tests of interaction terms. Estimates are from a
nested case-control sample within the European Prospective Investigation into Cancer and Nutrition (EPIC), which recruited participants between
1992 and 2000. Bars, 95% CIs.
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by perturbed vitamin Dmetabolism as a consequence of early
kidney dysfunction. Although the association remained con-
sistent throughout follow-up and was not affected by adjust-
ment for circulating creatinine, we cannot completely rule out
the possibility that early renal dysfunctionwas the cause, rather
than the result, of the observed distribution of circulating vita-
min D.

Many researchers have investigated circulating vitamin D
and all-cause mortality in general populations. Consistent
with our observation, many studies have reported higher risk
of death for people with low vitamin D concentrations (26–
33). This suggests that the association observed in our study
may not be specific to RCC survival, but rather a reflection
of a general phenomenon. Our observation that high levels
of 25(OH)D3 might be associated with higher risk of death
is consistent with results from the Uppsala Longitudinal
Study of Adult Men, which also suggest a U-shaped associa-
tion (34). Despite this accord, further studies are required to in-
vestigate the intriguing possibility that both low and high
concentrations are associated with all-cause mortality.

The principal limitation of our study is that 25(OH)D3 was
measured using a single blood sample drawn in adulthood.
Although individual vitamin D measurements are reasonably
reproducible, intraindividual variation may still be important

(35). Further, it is possible that a single measurement in adult-
hood does not capture exposure to vitamin D in an etiologi-
cally relevant period.

Our study has several strengths. Importantly, our sample
included participants from 10 European countries from
different geographical latitudes and with a wide range of
25(OH)D3 concentrations. Biospecimen handling was stan-
dardized, and quantification of circulating 25(OH)D3 took
place in a single laboratory, thus minimizing systematic inter-
laboratory variation. The prospective design of our study, in
which 25(OH)D3 concentrations were assessed using blood
collected prior to diagnosis, minimizes the chance that any
differences between cases and controls are caused by existing
tumors. Further, the availability of detailed information on
potential confounders—particularly the inclusion of circulat-
ing cotinine as a biomarker of current smoking intensity and
creatinine as a marker of renal function—affords additional
confidence that the observed associations were not caused
by residual confounding.

In conclusion, we found that low concentrations of
25(OH)D3 were associated with higher risk of RCC as well
as lower all-cause mortality among RCC cases. High concen-
trations of 25(OH)D3 might also be associated with increased
risk of all-cause mortality among RCC cases.
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Figure 4. Post–renal cell carcinoma (RCC) survival. Estimates from a nested case-control sample within the European Prospective Investigation
into Cancer and Nutrition (EPIC), which recruited participants between 1992 and 2000. A) Hazard ratios from a Cox model for all-cause mortality
after RCC diagnosis as a function of circulating concentration of 25-hydroxyvitamin D3 (25(OH)D3), relative to a concentration of 50 nmol/L. We
modeled 25(OH)D3 using restricted cubic splines with knots at the 10th, 33rd, 67th, and 90th percentiles of its distribution. The model was adjusted
for age at baseline, sex, country, and seasonality (sine and cosine functions of day of blood collection), smoking status at baseline (never/former/
current smoker), circulating cotinine (quartiles defined among the controls), alcohol intake at recruitment (in g/day), and body mass index (weight
(kg)/height (m)2). Solid and dashed lines represent the maximum likelihood estimates and 95% confidence intervals, respectively. The translucent
lines are 1,000 draws from the multivariate normal distribution defined by the maximum likelihood estimates and their variance-covariance matrix;
they thus give an indication of the posterior density for the hazard ratio under a uniform prior on the regression coefficients. The “rug plot” shows the
observed distribution of 25(OH)D3. B) Survival function after RCC diagnosis evaluated at given concentrations of 25(OH)D3, derived from a flexible
parametric survival model. Restricted cubic splines with knots at the 0th, 33rd, 67th, and 100th percentiles of the distribution of uncensored survival
times were used to model the baseline hazard. We modeled 25(OH)D3 using restricted cubic splines with knots at the 10th, 33rd, 67th, and 90th
percentiles of its distribution.
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Appendix Table 1. Distribution of 25(OH)D3 by Country of

Recruitment Among Renal Cell Carcinoma Cases and Controls

Nested Within EPIC, Recruitment 1992–2000

Country No.
Percentile of 25(OH)D3, nmol/L

5% 50% 95%

Denmark 228 18.19 50.68 89.11

France 33 19.30 45.63 86.47

Germany 354 18.01 41.72 78.00

Greece 56 18.72 42.16 65.90

Italy 246 14.55 40.08 77.00

Netherlands 169 22.54 45.79 78.91

Norway 10 25.06 52.42 71.83

Spain 205 22.37 43.97 77.84

Sweden 105 33.92 57.07 85.34

United Kingdom 264 24.25 51.26 82.73

Overall 1,670 18.90 45.69 81.31

Abbreviations: 25(OH)D3, 25-hydroxyvitamin D3; EPIC, European

Prospective Investigation into Cancer and Nutrition.
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